Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The genotype-to-phenotype problem (G2P) for multicellular development asks how genetic inputs control collective phenotypic outputs. However, this is a challenging problem due to gene redundancy and stochasticity, causing mutations to have subtle phenotypic effects and replicates to display significant variation. We approach this problem using the model organism Myxococcus xanthus, a motile self-organizing bacterium that forms three-dimensional cell aggregates that mature into spore-filled fruiting bodies when under starvation stress. We develop a high-throughput imaging method using three-dimensional-printed microscopes to efficiently collect large phenotypic datasets. Our automated methods for analysis and visualization produce a map of phenotypic variation in M. xanthus development. We demonstrate that even subtle effects on developmental dynamics caused by mutation can be identified, discriminated, characterized, and given statistical significance, with implications for future gene annotation studies and the effect of environmental factors on G2P.more » « less
-
O'Toole, George (Ed.)ABSTRACT Myxococcus xanthus copes with starvation by producing fruiting bodies filled with dormant and stress-resistant spores. Here, we aimed to better define the gene regulatory network associated with Nla28, a transcriptional activator/enhancer binding protein (EBP) and a key regulator of the early starvation response. Previous work showed that Nla28 directly regulates EBP genes that are important for fruiting body development. However, the Nla28 regulatory network is likely to be much larger because hundreds of starvation-induced genes are downregulated in a nla28 mutant strain. To identify candidates for direct Nla28-mediated transcription, we analyzed the downregulated genes using a bioinformatics approach. Nine potential Nla28 target promoters (29 genes) were discovered. The results of in vitro promoter binding assays, coupled with in vitro and in vivo mutational analyses, suggested that the nine promoters along with three previously identified EBP gene promoters were indeed in vivo targets of Nla28. These results also suggested that Nla28 used tandem, imperfect repeats of an 8-bp sequence for promoter binding. Interestingly, eight of the new Nla28 target promoters were predicted to be intragenic. Based on mutational analyses, the newly identified Nla28 target loci contained at least one gene that was important for starvation-induced development. Most of these loci contained genes predicted to be involved in metabolic or defense-related functions. Using the consensus Nla28 binding sequence, bioinformatics, and expression profiling, 58 additional promoters and 102 genes were tagged as potential Nla28 targets. Among these putative Nla28 targets, functions, such as regulatory, metabolic, and cell envelope biogenesis, were assigned to many genes. IMPORTANCE In bacteria, starvation leads to profound changes in behavior and physiology. Some of these changes have economic and health implications because the starvation response has been linked to the formation of biofilms, virulence, and antibiotic resistance. To better understand how starvation contributes to changes in bacterial physiology and resistance, we identified the putative starvation-induced gene regulatory network associated with Nla28, a transcriptional activator from the bacterium Myxoccocus xanthus . We determined the mechanism by which starvation-responsive genes were activated by Nla28 and showed that several of the genes were important for the formation of a highly resistant cell type.more » « less
-
O'Toole, George (Ed.)ABSTRACT Myxococcus xanthus is a bacterium that lives on surfaces as a predatory biofilm called a swarm. As a growing swarm feeds on prey and expands, it displays dynamic multicellular patterns such as traveling waves called ripples and branching protrusions called flares. The rate at which a swarm expands across a surface, and the emergence of the coexisting patterns, are all controlled through coordinated cell movement. M. xanthus cells move using two motility systems known as adventurous (A) and social (S). Both are involved in swarm expansion and pattern formation. In this study, we describe a set of M. xanthus swarming genotype-to-phenotype associations that include both genetic and environmental perturbations. We identified new features of the swarming phenotype, recorded and measured swarm expansion using time-lapse microscopy, and compared the impact of mutations on different surfaces. These observations and analyses have increased our ability to discriminate between swarming phenotypes and provided context that allows us to identify some phenotypes as improbable outliers within the M. xanthus swarming phenome. IMPORTANCE Myxococcus xanthus grows on surfaces as a predatory biofilm called a swarm. In nature, a feeding swarm expands by moving over and consuming prey bacteria. In the laboratory, a swarm is created by spotting cell suspension onto nutrient agar in lieu of prey. The suspended cells quickly settle on the surface as the liquid is absorbed into the agar, and the new swarm then expands radially. An assay that measures the expansion rate of a swarm of mutant cells is the first, and sometimes only, measurement used to decide whether a particular mutation impacts swarm motility. We have broadened the scope of this assay by increasing the accuracy of measurements and introducing prey, resulting in new identifiable and quantifiable features that can be used to improve genotype-to-phenotype associations.more » « less
-
Abstract The ability of bacteria to colonize and grow on different surfaces is an essential process for biofilm development. Here, we report the use of synthetic hydrogels with tunable stiffness and porosity to assess physical effects of the substrate on biofilm development. Using time-lapse microscopy to track the growth of expanding Serratia marcescens colonies, we find that biofilm colony growth can increase with increasing substrate stiffness, unlike what is found on traditional agar substrates. Using traction force microscopy-based techniques, we find that biofilms exert transient stresses correlated over length scales much larger than a single bacterium, and that the magnitude of these forces also increases with increasing substrate stiffness. Our results are consistent with a model of biofilm development in which the interplay between osmotic pressure arising from the biofilm and the poroelastic response of the underlying substrate controls biofilm growth and morphology.more » « less
-
Myxococcus xanthus bacteria are a model system for understanding pattern formation and collective cell behaviors. When starving, cells aggregate into fruiting bodies to form metabolically inert spores. During predation, cells self-organize into traveling cell-density waves termed ripples. Both phase-contrast and fluorescence microscopy are used to observe these patterns but each has its limitations. Phase-contrast images have higher contrast, but the resulting image intensities lose their correlation with cell density. The intensities of fluorescence microscopy images, on the other hand, are well-correlated with cell density, enabling better segmentation of aggregates and better visualization of streaming patterns in between aggregates; however, fluorescence microscopy requires the engineering of cells to express fluorescent proteins and can be phototoxic to cells. To combine the advantages of both imaging methodologies, we develop a generative adversarial network that converts phase-contrast into synthesized fluorescent images. By including an additional histogram-equalized output to the state-of-the-art pix2pixHD algorithm, our model generates accurate images of aggregates and streams, enabling the estimation of aggregate positions and sizes, but with small shifts of their boundaries. Further training on ripple patterns enables accurate estimation of the rippling wavelength. Our methods are thus applicable for many other phenotypic behaviors and pattern formation studies.more » « less
An official website of the United States government
